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Quantum Transport and Classical Dynamics in 
Open Billiards 
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We report numerical results of an investigation of quantum transport for a 
weakly opened integrable circle and chaotic stadium billiards with a pair of con- 
ducting leads. While the statistics of spacings of resonance energies commonly 
follow the Wigner (GOE)-like distribution, the electric conductance as a func- 
tion of the Fermi wavenumber shows characteristic noisy fluctuations associated 
with a typical set of classical orbits unique for both billiards. The wavenumber 
autocorrelation for the conductance is stronger in the stadium than the circle 
billiard, which we show is related to the length spectrum of classical short 
orbits, We propose an explanation of these contrasts in terms of the effect of 
phase decoherence due to the underlying chaotic dynamics. 

KEY WORDS: Quantum transport; open billiards; chaos; Ericson fluctua- 
tion; path-length spectrum. 

1. I N T R O D U C T I O N  

Dur ing  the last decade,  r emarkab le  advances  in semiconduc to r  fabr ica t ion  
technology  have b rough t  chal lenging devices not  only  for electronic 
engineers,  but  for those who s tudy fundamenta l  physics (see, e.g., ref. 1). 
Both exper imenta l ly  and  theoret ical ly ,  there has been a great  deal  of  inter- 
est in the electronic and magnet ic  proper t ies  of  such mesoscopic systems 
and as a result  a number  of  new physical  p h e n o m e n a  have been observed 
and pred ic ted . ( see ,  e.g., ref. 2). A m o n g  them, one of  the most  interest ing 
topics is chaotic bounda~3, scattering in systems formed in h igh-mobi l i ty  
G a A s / A I G a A s  he te ros t ruc tures  where the system size is less than  the elastic 
mean free pa th  of  electrons.  In such systems, the mo t ion  of  two-d imen-  
sional (2D)  non in te rac t ing  e lect rons  confined by wall of  a rb i t r a ry  geomet ry  
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is ballistic, and the classical "billiard" model successfully explains experi- 
mental results of those systems. ~3~ In the ballistic regime, the shape of 
walls directly determines the motion of electrons colliding with them, 
and the nonlinear dynamics of the electrons plays an essential role in quan- 
tum transport through the microstructures (see, e.g., ref. 4 and references 
therein). 

One of the prototypes of conservative chaotic systems is the "stadium 
billiard. ''15~ It belongs to the class of K systems and its quantum mechanical 
study has had a great impact on the field of quantum chaos3 6~ On the other 
hand, realistic systems are more or less open systems and it is highly 
desirable to examine the effect of chaotic scattering on quantum transport 
in open systems. 2 In this context, studies of its open version have recently 
begun in connection with mesoscopic physics. ~4"s-l-'~ 

In this paper, we report numerical results of a detailed analysis of 
electric conductance fluctuations as a function of the Fermi wavenumber 
for weakly opened billiards without magnetic field, and show that the 
integrability of systems has a surprising effect on ballistic quantum trans- 
port. 

The paper is organized as follows. The classical equation of motion of 
electrons is numerically solved for integrable and chaotic open billiards in 
Section 2. In Section 3 we summarize our work on their quantum dynamics 
to see the differences in conductance fluctuations. In Section 4 we focus in 
more detail on the signature of chaos in quantum transport. The results of 
a computation using semiclassical theory are compared with those of the 
quantum calculation discussed in Section 3. The first half of Section 2 and 
Sections 3.1 and 3.2 are based on joint work with Prof. K. Nakamura ~91 
and the latter half of Section 2, Section 3.3, and Section 4 are a direct 
application of joint work with Prof. J. Burgd6rfer ~t2~ to the geometry of the 
model we adopt in this paper. 

2. C O M P U T A T I O N  OF CLASSICAL D Y N A M I C S  

Figure 1 represents an open stadium characterized by a, /, and d for 
the radius of a semicircle, the half-length of a line segment, and the width 
of holes at x = al ,  a2, respectively. We shall prescribe a t = - a '  and a2 = a', 
with a'= l+ (a 2 -  d2/4) '/'-. While the aspect ratio a = l/a will be tunable, 
the area of the billiard A (=rta2+4al) will be kept fixed and all lengths 
will be scaled by x//-A. Here we shall concentrate on a weakly opened situa- 
tion where the width of the holes is small in comparison with the dimen- 
sion of the billiard and ample fluctuation properties are anticipated in 

-' For review of quantum chaotic scattering see, e.g., refs. 7. 
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Fig. 1. Schematic diagram for open stadium billiard. "+" is the origin of the (x,y) 

coordinates. 

quantum transport. For  convenience, d/.v,'A = 0.0935 will be chosen below. 
Edges of leads 1 and 2 are assumed to be located at the left and right holes, 
respectively. We shall call the region lying inside the billiard and satisfying 
Ix1 < a '  the "cavity region." Chaotic scattering of electrons in this region 
will control the conductance. 

As for the closed version of stadium billiards, the K entropy (maxi- 
m u m  Lyapunov exponent) vanishes at the integrable limit cr = 0 and takes 
a maximum at a---1 c51; these circle and fully chaotic billiards are hereafter 
abbreviated as C and S billiards, respectively. For  the open-system version 
of the S billiard, when we calculate the distribution of the dwell time r [ or 
path length L ( ~  r ) ]  during which an incoming electron with a given 
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Fig. 2. Path-length spectrum P(L): (a) circle; (b) stadium. Dashed line represents the 
exponential decay exponent ~ ( -~ 0.0223) predicted by Jensen? t3~ L is normalized as A --- n + 4. 
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injection angle 0o at hole 1 dwells inside the cavity region, it exhibits a fine 
comblike structure consisting of multiple scales, resulting in nice self-similar 
or fractal structuresJ 9~ For  the C billiard, on the contrary, neither fine 
structures nor self-similarity can be perceived. 

Figure 2 shows Monte Carlo simulations of the classical path-length 
spectrum for the open C and S billiards. The path-length spectrum P(L) 
has characteristic structures in addition to a cusp corresponding to the 
"direct" path connecting the leads 1 and 2. In case of the open C billiard, 
the function P(L) consists of a large number of cusps with narrow width, 
each of which corresponds to a bundle of trajectories for transmission 
(Fig. 2a). In the case of the open S billiard, P(L) displays a sequence of 
almost equidistant broad peaks in the short-length region L < 70 (Fig. 2b). 
The period of these peaks corresponds approximately to the perimeter 
length of the cavity region. For  longer path lengths in the open S billiard, 
the proliferation of orbits tends to average out this structure, resulting in 
a coarse-grained exponential distribution I~x ~4~ 

Po(L) = y e x p ( - y L )  ( 1 ) 

with a decay constant y = 2d/Azt = 0.0223 (dashed line in Fig. 2), Equation 
(1) has been verified numerically in the limit of long orbits/4" ~o~ 

3. COMPUTATION OF Q U A N T U M  D Y N A M I C S  

3.1. Numerical Solution of the Schr6dinger Equation 

To see the quantum analog of the classical issues, we shall solve the 
Schr6dinger equation for open systems, - (h2/2l t )V2V=(h2/2l l )kv~F,  
where k F is the Fermi wavenumber. Define the wavevector k = (k .... m~z/d) 
in the leads, where k,,,= (k~--(mT~/d)2) '/2 (m = l, 2,...). For  a propagating 
wave with mode n (~<N= [kvd/g])  incoming through lead l, the solution 

inside the leads j ( = 1, 2) is 

L --out'"'lg/lJ)( -t- y; n ) =  aj, e i*'' ...... "q~,,(y) + SC,,,-~,ei'-"a""-"J'$,,,(y) 
m = 1 

(2) 

where ~b,,,(y) = (2/d) m sin((m~/d)(y + d/2)) with [Yi <~ d/2. On the other 
hand, the solution inside the cavity region is given in the form 

f2~ 
~in(x, 3') = (2/d)1/2 c,,(0) e i~~ ...... o+ ,.~ino dO 

~0 
(3) 
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~tin should satisfy the Dirichlet bounda ry  condit ion,  Tin(X, y ) =  0, at the 
hard  walls. ~ . 2 ~  and ~in should ma tch  at the holes. The  continuity and OUl 

smoothness  condit ions are given respectively by 

~ , / I  i.,.=,,, = ~ i ,  I.,-=,,/, (d/dx) ~,.i~ = (d/dx) out - -  out .,- =,,j ~ui, [.,. =,,~, j = 1, 2 

These three bounda ry  condit ions sould be solved s imultaneously to obta in  
{c,,} and 'J '  {S,,,,}. Then we can calculate the conductance  as a function of 
a and the Fermi  energy [ev=(hkv)2/2/t] of incoming electrons by the 

G ~ G I''1 appl icat ion of  Landauer ' s  formulallS~: = 5-',,= ~ with G ~  (2e2/h) 
~'l <~m<U It..,I 2 where t ..... =(k,, ,/k,,)l/2 .~,(2) 

' - -  h i l l  " 

3.2. Conductance Fluctuat ions and Correlat ions 

Figure 3 shows the conductance  G as a function of kv (kvd/n<~4.8). 
Note:  New modes  appea r  at kvd/n=n with 17 = 1, 2 .... and G and G ~ are 
identical for kvd/n-%< 2. For  bo th  billiards the conductance  G c o m m o n l y  
exhibits very noisy fluctuations. Nevertheless the conductance,  when 
coarse-grained,  exhibits shor t -per iod and smal l -ampl i tude oscillations 
a round  some pla teau value for the C billiard, but  long-per iod and large- 
ampl i tude smoo th  oscillations for the S billiard/9~ 

Fig. 3. 
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Conductance G(kF) for kFd/~ <.% 4.8: (a) circle: (b) stadium. Insets: Partial magnifica- 
tion for the range 1.4 ~< kFd/lr <~ 1.6. 
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Fig. 4. Wavenumber autocorrelation function F(x) for conductance G"~(k~). Solid and 
dotted lines correspond to open circle and stadium billiards, respectively. (From ref. 9.) 

To characterize the fluctuations, we have calculated the wavenumber 
autocorrelation function 

1-'(K) =. ( ~Gll~(kv - K/2) ~GIt)(kv + h'/2) ) k~ (4) 

with ~iG ~ ~ = G I ~ J - ( G tl i) kv. In Fig. 4, F(h') shows distinctive short-range 
behaviors<9~: (1) correlation as a whole is stronger in S than C billiards; (2) 
the central peak at the origin has almost the same width for both C and 
S billiards. The result (1) provides a logical foundation for the monotonic 
structure of the coarse-grained conductance for the S billiard. The result 
(2) indicates that both C and S billiards are commonly accompanied by 
Ericson-type fluctuations, ~'61 yielding an insight ~7~ into the relationship 
between fluctuations in random-matr ix  theory c~8~ and nonlinear dynamics. 

The contrasts between C and S billiards prove to be more remarkable 
when d/x//-A is decreased. For  a continuous change of a from 0 through I, 
conversion from short- to long-period and from small- to large-amplitude 
oscillations occurs. 

3.3. Power Spectrum of Conductance Fluctuations 

In order to quantify more precisely the suggestive difference in conduc- 
tance oscillations discussed above, we have calculated the power spectrum 
of the conductance ~G~(kF) (Fig. 5). (The results for the other modes have 
similar structures, though the strength of the peaks is a little different.) We 
can see prominent peaks at the positions L = 2.4 .... for the C billiard and 
L =  0.5 for the S billiard. These spectra correspond to the characteristic 
oscillations of the coarse-grained conductance for both billiards. 

3.4. Statistics of Resonance Energies 

The noisy conductance fluctuations as a function of k F are a typical 
feature of weakly open systems, so long as poles of the S-matrix are well 
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Fig. 5. 
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Power spectrum of the conductance ~GIt)(k~): (a) circle, (b) stadium. L is normalized 
as A = n + 4 .  
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Fig. 6. Statistics of spacings of resonance energies in (a) open circle and (b) stadium 
billiards. The number of resonances is approximately 550 in both calculations. Dashed line 
represents a Brody distribution with a parameter (a) q = 0.5 and (b) 0.8. 
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concentrated. In our treatment both C and S billiards have the equal area 
A for their cavity region, ensuring almost equal concentration of poles. In 
both billiards, as shown in Fig. 6, the statistics of spacings of resonance 
energies follow the Wigner (GOE)-like distribution predicted by random- 
matrix theoryj'S~ When we approximate it with a Brody distribution 

P q( S)  = o:S q exp( - f l S  l + q) (5) 

the parameter q is roughly estimated as 0.5 and 0.8 for the C and S 
billiards, respectively. This implies that even a small perturbation or dif- 
fraction around the holes in an integrable open billiard immediately causes 
some nonintegrable effect on the statistics of resonancesJ ~9~ 

4. SEMICLASSICAL ANALYSIS OF CONDUCTANCE 
FLU CTUATIONS 

4.1. Fourier Spectrum of Scattering Amplitude and Classical 
Paths 

In this section we explore the classical-quantum correspondence for 
conductance fluctuations in more detail. According to semiclassical 
theory,~20 

t ..... ~(D,"i,,,)'/2exp(~f, p. d x -  i~ o@ (6) 

where a~. is the Maslov index, D~I,, , is the amplitude factor, and the sum is 
taken over all classical trajectories s connecting incoming channel n and 
outgoing channelm. The phase factor with the integral is rewritten as 
exp(ikvL s) using the path length L.,.. 

When we evaluate the Fourier transform of the transmission 
amplitude t l ~ ( k v ) ,  we find surprising features. In the case of the open C 
billiard, the spectrum in the region L < 42 exhibits a sequence of prominent 
peaks which with a high accuracy correspond to a set of classical "asterisk" 
paths c'21 connecting the entrance and exit in the cavity (Fig. 7a). On the 
other hand, in the case of the open S billiard, no evident peak appears 
other than the one which can be assigned to a symple path with single 
bouncing with strong regularity (Fig. 7b). In both cases, there exists a 
strong peak corresponding to a direct transmission without bouncing with 
a wall. 



Quantum Transport in Open Billiards 211 

L~ 

0 

2 -  

0 

-(_ ')  ' , . . 

10 20 i. 30 40 50 

.-( ) (hi 
.\(.--- - ) 

10 20 I, 30 40 50 

Fig. 7. Fourier spectrum of transmission amplitude tll(k v) and corresponding classical 
paths: (a) circle: (b) stadium. L is normalized as A = r~ + 4. 

In the case of  the open C bi l l iard,  each bundle  of  t ra jector ies  for t rans-  
mission is separa ted  enough and ca r ry ing  a finite measure ,  which is an 
inherent  p rope r ty  of  an in tegrable  system, 3 and this emphas izes  the corre-  
spond ing  spectral  peaks  in ?,,,,,. The  a lmos t  equ id i s tan t  peaks  and the peak  
of  direct  t r ansmiss ion  in the spect ra  "f,,,,, for the  open  C bi l l iard are re la ted 
by Landauer ' s  formula  to the per iods  of  conduc tance  oscil lat ions.  There  
seems to be a selection rule that  pa ths  with smal ler  angles of  incidence and 
t ransmi t tance  survive in q u a n t u m  t r anspor t ,  which suppresses  all pa ths  
other  t han  the aster isk paths.  O n  the con t ra ry ,  the insensi t ivi ty of  the scat-  
tering mat r ix  to kv  in the open S bi l l iard  reflects the s tabi l i ty  of  the classi- 
cal ergodic phase  space,  as is discussed in refs. 9 and  11.4 In Fig. 7b the two 
peaks at L = 4.00 and 4.47, which are  r emnan t s  in the sea of  chaos,  cause 
the long-per iod '  osci l la t ions observed in the coarse-gra ined  conductance ,  tgl 

In open integrable systems, an incoming electron at entrance sees a "window" with finite 
measure for transmission into an exit, while in open chaotic systems, classical paths of elec- 
trons are mixed and intricate enough to produce infinitely small windows for transmission 
of each electron. See, e.g., dwell-time spectra shown in ref. 9. 

4 Analogous arguments were made for closed quantum billiards. See Nakamura and 
Thomas. ~2~j 
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Fig. 8. Conductance autocorrelation function F(K) (solid line) and Fourier transform of 
C(x) using P(L) averaged over the interval AL= +2 (dashed line): (a) circle; (b) stadium. 
Insets: Partial magnification for h'd/n <~ 0.03. Dotted curve represents the Fourier transform of 
C(x) =Po(x) ~ exp(-),x), i.e., a Lorentzian 1/[1 + (x/),)2]. 

4.2. Comparison of Correlation Functions with Semiclassical 
Results 

In the previous section we showed the conductance autocorrelation 
function C(K) obtained by a quantum calculation. In the semiclassical limit 
the Fourier transform of the classical length spectrum C(x)= ~ P(L +x) 
P(L) dL gives the autocorrelation function Fcl(x). (41 Here P(L) is the path- 
length spectrum shown in Fig. 2. 

Figure 8 shows that the quantum mechanical result of C(x) and the 
Fourier transform of C(x) are in good agreement with each other. In the 
case of the open S billiard, the strong correlation at Kd/n ".. 0.05 in F(x)  is 
well reproduced by For(K) (Fig. 8b). The peak at Kd/n "-" 0.05 corresponds 
to the broad oscillations of P(L) with period L-~ 10 in Fig. 2b, and this 
period coincides approximately with the perimeter length of the stadium. 
Such oscillations of P(L) are clearly observed in the short-length region 
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(L<70)  and are smeared out for L>70,  so that Eq. (I) is followed. The 
Fourier transform of Po(L) gives a Lorentzian 

Fo(X) 1 
/'o(0-----~ = 1 + (~/7)2 (7) 

and fits well to the cusp of F(x) near x = 0  (insets of Fig. 8). ~14~ 

5. C O N C L U S I O N S  

In conclusion, from the viewpoint of the quantum mechanical 
manifestation of chaos, effects of chaotic scattering on quantum transport 
have been analyzed for weakly open integrable circle and fully chaotic 
stadium billiards with a pair of conducting leads. For both billiards, elec- 
tric conductance as a function of Fermi wavenumber for each incident 
mode commonly shows very noisy fluctuations, and the statistics of 
spacings of resonance energies follow a Wigner (GOE)-like distribution. 
This implies that even a small perturbation around the holes immediately 
causes some nonintegrable effect on the statistics. Nevertheless wavenum- 
ber autocorrelation for the conductance is stronger in the stadium than the 
circle billiard. This contrast has been explained in terms of regular and 
chaotic orbits in the underlying classical dynamics. We have shown that 
the difference of the features in the autocorrelation functions comes from 
structures in the length spectra in the short-length regime accessible in 
experiments. In the Fourier spectrum of the quantum mechanical scattering 
amplitude, we can find traces of a set of classical paths in the integrable 
cricle billiard. 

REFERENCES 

1. M. A. Reed and W. P. Kirk, eds., Nanostructure Physics and Fabrication (Academic Press, 
New York, 1989). 

2. B. L. Altshuler, P. A. Lee, and R. Webb, eds., Mesocopic Phenomena in Solids (North- 
Holland, Amsterdam, 1991 ). 

3. M. L. Roukes, A. Scherer, and B. P. Van der Gaag, Phys. Rev. Lett. 64:1154 (1990); 
M. L. Roukes and O. L. Alerhand, Phys. Rev. Lett. 65:1651 (1990); C. W. J. Beenakker 
and H. van Heuten, in Electronic Properties of Muhilayers and Low-Dflnensional Semi- 
conductor Structures, J. M. Chamberlain, L, Eaves, and J.-C. Portal, eds. (Plenum Press, 
New York, 1990), p. 75; C. W. J. Beenakker and H. van Houten, in Solid State Physics, 
Vol. 44, H. Ehrenreich and D. Turnbull, eds. (Academic Press, New York, 1991 ), p. 1. 

4. H. U. Baranger, R. A. Jalabert, and A. D. Stone, Chaos 3:665 (1993). 
5. L. A. Bunimovich, Funct. Anal. Appl. 8:254 (1974); G. Benettin and J. M. Strelcyn, Phys. 

Ret,. A 17:773 (1978). 
6. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett, 42:1189 (1979); E. J. Heller, Phys. 

Rev. Lett. 53:1515 (1984). 

822/83/I-2-15 



214 Ishio 

7. M. C. Gutzwiller, Chaos ht Classical and Quantum Medlanics (Springer, New York, 1990); 
U. Smilansky, in Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn- 
Justin, eds. (North-Holland, New York, 1991); K. Nakamura, Quantum Chaos: A New 
Paradigm of Nonlinear Dynamics (Cambridge University Press, Cambridge, 1993 ). 

8. C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins, and A. C. Gossard, Phys. 
Rev. Lett. 69:506 (1992). 

9. K. Nakamura and H. Ishio, J. Phys. Soc. Jpn. 61:3939 (1992). 
10. W. A. Lin, J. B. Delos, and R. V. Jensen, Chaos 3:655 (1993). 
11. K. Nakamura, K. Ito, and Y. Takane, J. Phys. A 27:5889 (1994). 
12. H. Ishio and J. Burgd6rfer, Phys. Rev. B 51:2013 (1995). 
13. R. V. Jensen, Chaos 1:101 (1991). 
14. R. Bliimel and U. Smilansky, Phys. Rel,. Lett. 60:477 (1988). 
15. R. Landauer, IBM J. Res. Dev. 1:223 (1957). 
16. T. Ericson and T. Mayer-Kuckuk, Annu. Rel,. Nucl. Sci. 16:183 (1966). 
17. E. Doron, U. Smilansky, and A. Frenkel, Physica D 50:367 (1991). 
18. M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, New York, 1990). 
19. H. Ishio, J. Phys. Soc. Jpn. 63 (Suppl. A):203 (1994). 
20. W. H. Miller, Adv. Chem. Phys. 25:69 (1974); R. A. Jalabert, H. U. Baranger, and A. D. 

Stone, Phys. Rev. Lett. 65:2442 (1990). 
21. K. Nakamura and H. Thomas, Phys. Ret,. Lett. 61:247 (1988). 


